Close
  Indian J Med Microbiol
 

Figure 2 Differentiation process of stem cells. When the sperm and oocyst combine to form the fertilized egg, it results in the multiplication of the cells mitotically to produce a cluster of cells (Morula). This step is followed by the formation of a cavity in a cellular mass known as Blastocyst. This initially leads to the formation of pluripotent stem cells and eventually results in differentiation and formation of pluripotent stem cells. This pluripotent stem cell further differentiates into Neural stem cells and the formation of neurons, astrocytes, and oligodendrocyte takes place by means of factors such as FGF and SHH. The formation of hematopoietic stem cells is followed by differentiation into WBC and RBC cells by means of factors such as EGF, FGF, and GDF. Mesenchymal stem cells are differentiated further into bone and cartilages by means of growth. SHH, Sonic hedgehog factor; EGF, epidermal growth factor; FGF, fibroblast growth factor; GDF, growth differentiation factor.

Figure 2 Differentiation process of stem cells. When the sperm and oocyst combine to form the fertilized egg, it results in the multiplication of the cells mitotically to produce a cluster of cells (Morula). This step is followed by the formation of a cavity in a cellular mass known as Blastocyst. This initially leads to the formation of pluripotent stem cells and eventually results in differentiation and formation of pluripotent stem cells. This pluripotent stem cell further differentiates into Neural stem cells and the formation of neurons, astrocytes, and oligodendrocyte takes place by means of factors such as FGF and SHH. The formation of hematopoietic stem cells is followed by differentiation into WBC and RBC cells by means of factors such as EGF, FGF, and GDF. Mesenchymal stem cells are differentiated further into bone and cartilages by means of growth. SHH, Sonic hedgehog factor; EGF, epidermal growth factor; FGF, fibroblast growth factor; GDF, growth differentiation factor.