Close
  Indian J Med Microbiol
 

Figure 1 The synthesis of melatonin, thyroid-stimulating hormone (TSH), and cortisol, depending on circadian rhythm. The expression of cortisol, a steroid hormone produced in the adrenal gland, is tightly regulated by circadian rhythms in various mammals, including humans. The primary rhythm of this cycle is controlled by the suprachiasmatic nucleus (SCN), located in the hypothalamus. The secretion pattern of cortisol is coordinated by the hypothalamic–pituitary–adrenal (HPA) axis and the hippocampus. This HPA axis receives input from the SCN, from which it controls corticotrophin-releasing hormone (CRH) release in the paraventricular nucleus. From there, adrenocorticotrophic hormone (ACTH) is released from the corticotropes in the anterior pituitary by stimulating corticotrophin-releasing hormone (CRH). In normal individuals, cortisol levels fall to low or even undetectable levels around midnight, followed by peak expression around at 08:30

Figure 1 The synthesis of melatonin, thyroid-stimulating hormone (TSH), and cortisol, depending on circadian rhythm. The expression of cortisol, a steroid hormone produced in the adrenal gland, is tightly regulated by circadian rhythms in various mammals, including humans. The primary rhythm of this cycle is controlled by the suprachiasmatic nucleus (SCN), located in the hypothalamus. The secretion pattern of cortisol is coordinated by the hypothalamic–pituitary–adrenal (HPA) axis and the hippocampus. This HPA axis receives input from the SCN, from which it controls corticotrophin-releasing hormone (CRH) release in the paraventricular nucleus. From there, adrenocorticotrophic hormone (ACTH) is released from the corticotropes in the anterior pituitary by stimulating corticotrophin-releasing hormone (CRH). In normal individuals, cortisol levels fall to low or even undetectable levels around midnight, followed by peak expression around at 08:30