ORIGINAL ARTICLE |
|
Year : 2018 | Volume
: 8
| Issue : 2 | Page : 53-58 |
|
Isolongifolene Attenuates Oxidative Stress and Behavioral Impairment in Rotenone-Induced Rat Model of Parkinson’s Disease
Rengasamy Balakrishnan, Kuppusamy Tamilselvam, Ahmedsha Sulthana, Thangavel Mohankumar, Dharmar Manimaran, Namasivayam Elangovan
Department of Biotechnology, School of Biosciences, Periyar University, Salem, Tamil Nadu, India
Correspondence Address:
Namasivayam Elangovan Department of Biotechnology, School of Biosciences, Periyar University, Periyar Palkalai Nagar, Salem - 636 011, Tamil Nadu India
 Source of Support: None, Conflict of Interest: None  | Check |
DOI: 10.4103/ijnpnd.ijnpnd_3_18
|
|
Introduction: Parkinson’s disease (PD) is a progressive age-related disease, in which dopaminergic neurons in the nigrostriatal pathway are destroyed, resulting in movement and behavioral impairment. Oxidative stress and the generation of reactive oxygen species play a key role in the progression and pathology of neurodegenerative diseases such as PD. Rotenone is a common pesticide that induces PD through the generation of oxidative stress. Isolongifolene (ILF), a tricyclic sesqueterpene of Murraya koenigii, has antioxidant and neuroprotective effects. The current study was aimed to investigate the effect of ILF against oxidative stress and movement impairment on rotenone-induced rat model of PD. Materials and Methods: Biochemical measures, including the activities of catalase, glutathione peroxidase (GPx), superoxide dismutase (SOD) and the levels of reduced glutathione (GSH) and lipid peroxidation products [thiobarbituric acid reactive substances (TBARS) and behavioral analysis (hang and catalepsy test) were performed. Results: The muscle strength and cataleptic score of the ILF co-treated groups were significantly improved. Treatment with ILF prevented the increases in the levels of TBARS, significantly improved the SOD, catalase, GPx activities, and GSH levels. Conclusion: These findings suggested that ILF has neuroprotective properties through its potent antioxidant activities.
|
|
|
|
[FULL TEXT] [PDF]* |
|
 |
|