Users Online: 103

Home Print this page Email this page Small font sizeDefault font sizeIncrease font size

Home | About us | Editorial board | Search | Ahead of print | Current issue | Archives | Submit article | Instructions | Subscribe | Contacts | Login 
     
ORIGINAL ARTICLE
Year : 2014  |  Volume : 4  |  Issue : 4  |  Page : 203-213

Ferulic acid prevents ultraviolet-B radiation induced oxidative DNA damage in human dermal fibroblasts


Department of Biochemistry and Biotechnology, Annamalai University, Chidambaram, Tamil Nadu, India

Correspondence Address:
Rajendra Prasad Nagarajan
Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar 608 002, Chidambaram, Tamil Nadu
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/2231-0738.139400

Rights and Permissions

Aim: Protective effects of ferulic acid (FA) against ultraviolet-B (290-320 nm) radiation induced cellular changes were investigated in human dermal fibroblasts (HDFa). Materials and Methods: HDFa cells pretreated with increasing concentrations of FA (0, 10, 20, 40 μg/ml) for 30 min, were UVB irradiated and different cellular and oxidative end points were analyzed. Results: The percentage of cytotoxicity, intracellular reactive oxygen species (ROS) levels, mitochondrial membrane potential, thiobarbituric acid reactive substances (TBARS) and DNA damage, were significantly increased in 19.8 mJ/cm 2 ultraviolet-B (UVB)-exposed HDFa. Further, exposure to UVB causes significantly decreased antioxidants status in HDFa cells. Treatment of HDFa cells with FA before 30 min of UVB-irradiation significantly restored mitochondrial membrane potential, ROS levels and antioxidant status in HDFa. Further, FA treatment reverted UVB-induced mutagenesis in Ames tester strains and DNA damage in HDFa. Moreover, we noticed increased expression of GADD 45α, XRCC1 and HOGG1 in UVB exposed HDFa. Conversely, FA pretreatment significantly attenuated UVB-induced expression of DNA repair genes in HDFa. Conclusion: The present findings indicate that FA act as a sunscreen rather than working at molecular level to offer photoprotection.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed3900    
    Printed115    
    Emailed0    
    PDF Downloaded274    
    Comments [Add]    
    Cited by others 6    

Recommend this journal