Users Online: 270

Home Print this page Email this page Small font sizeDefault font sizeIncrease font size

Home | About us | Editorial board | Search | Ahead of print | Current issue | Archives | Submit article | Instructions | Subscribe | Contacts | Login 
Year : 2013  |  Volume : 3  |  Issue : 3  |  Page : 269-275

Protective effect of gallic acid on immobilization induced stress in encephalon and myocardium of male albino Wistar rats

1 Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalai Nagar, Tamil Nadu, India
2 Division of Biochemistry, Rani Mayyamai College of Nursing, Faculty of Medicine, Annamalai University, Annamalai Nagar, Tamil Nadu, India

Correspondence Address:
Nadanam Saravanan
Division of Biochemistry, Rani Mayyamai College of Nursing, Faculty of Medicine, Annamalai University, Annamalai Nagar - 608 002, Tamil Nadu
Login to access the Email id

Source of Support: Meritorious Fellowship by UGC, India, Conflict of Interest: None

DOI: 10.4103/2231-0738.114854

Rights and Permissions

Objectives: The aim was to elucidate the effect of gallic acid (GA) on encephalon/brain and myocardium/heart of rats subjected to immobilization stress (IS). Materials and Methods: IS was induced by placing the rats in 20 cm × 7 cm plastic tubes for 2 h/day for 21 days. Rats were post-orally treated with GA at 10 mg/kg body weight daily for three weeks. Followed by sacrifice, brain and heart tissues were removed carefully for biochemical estimations, and H and E staining for histopathological studies. Results: In IS, significant ( P < 0.05) increase in lipid peroxidation (LPO) and a significant ( P < 0.05) decrease in antioxidant activities showed shrunken neurons in brain and myocardial edema as an evidence of major tissue damage in stressed rats. The data revealed that IS produced a severe oxidative damage in the brain and myocardium, and treatment with GA distinctly reduced these stress-induced changes compared to stressed rats. GA (10 mg/kg) to control rats did not show any significant effect. Conclusions: We concluded that GA inhibits LPO and preserved the antioxidant levels as an evidence of resuming the structural integrity of brain and heart tissues. So, GA may be valuable for the prevention and treatment of stress related disorders.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded217    
    Comments [Add]    
    Cited by others 3    

Recommend this journal