International Journal of Nutrition, Pharmacology, Neurological Diseases

ORIGINAL ARTICLE
Year
: 2019  |  Volume : 9  |  Issue : 4  |  Page : 156--164

Preventive Effect of Opuntiol, Isolated from Opuntia ficus indica (L. Mill), Extract Against Ultraviolet A Radiation-Induced Oxidative Damages in NIH/3T3 Cells


Veeramani kandan Ponniresan1, Illiyas Maqbool1, Radhiga Thangaiyan1, Kanimozhi Govindasamy2, Nagarajan Rajendra Prasad1 
1 Department of Biochemistry & Biotechnology, Annamalai University, Annamalainagar 608002, Tamil Nadu, India
2 Department of Biochemistry, Dharumapurm Gnanambigai Government Arts College for Women, Mayiladuthurai 609001, Tamil Nadu, India

Correspondence Address:
Nagarajan Rajendra Prasad
Department of Biochemistry & Biotechnology, Annamalai University, Annamalainagar 608 002, Tamil Nadu
India

Aim: We investigated the role of opuntiol, isolated from Opuntia ficus indica, against ultraviolet A waveband-mediated oxidative damages in the mouse embryonic fibroblast cell lines (NIH‐3T3). Materials and Methods: The antioxidant potential of opuntiol was carried out by hydroxyl radical, superoxide anion and DPPH radical scavenging assays. The preventive effect of opuntiol against UV-mediated cytotoxicity was revealed by MTT assay. Further, the oxidative end points during UV-exposure, in the presence and absence of opuntiol, was analyzed by DCFH-DA staining, rhodamine-123 staining and alkaline comet assay. Results: Opuntiol significantly neutralizes hydroxyl (OH), superoxide anion (O2•–), hydrogen peroxide (H2O2), and 2,2-diphenyl-2-picrylhydrazyl (DPPH•) radicals in a concentration-dependent manner. In this study, the NIH-3T3 cells were treated with UVA-waveband in the presence and absence of opuntiol and oxidative damage markers were analyzed. We observed that opuntiol pretreatment (5 μM-20 μM) prevented 10 mJ/cm2UVA radiation-induced cytotoxicity in NIH-3T3 cells. Further, single UVA-radiation induces reactive oxygen species (ROS) through intracellular photosensitizers. Conversely, opuntiol pretreatment prevented UVA-mediated ROS generation and subsequent lipid peroxidation and loss of enzymatic antioxidants (superoxide dismutase [SOD], catalase, and glutathione peroxidase) in the NIH-3T3 cells. It has also been observed that the UVA-mediated ROS subsequently induces DNA damage and alters mitochondrial transmembrane potential (MMP). We noticed that opuntiol prevents UVA-radiation-mediated DNA single-strand breaks. Further, it prevents loss of MMPs and apoptotic morphological changes in the NIH-3T3 cells. Conclusion: Thus, these findings illustrate that opuntiol prevents UVA-radiation-mediated oxidative stress-related biochemical changes in the cellular system.


How to cite this article:
Ponniresan Vk, Maqbool I, Thangaiyan R, Govindasamy K, Prasad NR. Preventive Effect of Opuntiol, Isolated from Opuntia ficus indica (L. Mill), Extract Against Ultraviolet A Radiation-Induced Oxidative Damages in NIH/3T3 Cells.Int J Nutr Pharmacol Neurol Dis 2019;9:156-164


How to cite this URL:
Ponniresan Vk, Maqbool I, Thangaiyan R, Govindasamy K, Prasad NR. Preventive Effect of Opuntiol, Isolated from Opuntia ficus indica (L. Mill), Extract Against Ultraviolet A Radiation-Induced Oxidative Damages in NIH/3T3 Cells. Int J Nutr Pharmacol Neurol Dis [serial online] 2019 [cited 2019 Dec 6 ];9:156-164
Available from: http://www.ijnpnd.com/article.asp?issn=2231-0738;year=2019;volume=9;issue=4;spage=156;epage=164;aulast=Ponniresan;type=0