Users Online: 272

Home Print this page Email this page Small font sizeDefault font sizeIncrease font size

Home | About us | Editorial board | Search | Ahead of print | Current issue | Archives | Submit article | Instructions | Subscribe | Contacts | Login 
     
ORIGINAL ARTICLE
Year : 2019  |  Volume : 9  |  Issue : 1  |  Page : 48-52

The potency of Pinus merkusii extract nanoparticles as anti Mycobacterium tuberculosis: An in vitro study


1 Department of Pharmacology, Faculty of Veterinary Medicine, Airlangga University, Surabaya, Indonesia
2 Department of Pharmacy Biology, Faculty of Pharmacy, Hang Tuah University, Surabaya, Indonesia
3 Department of Conservative Dentistry, Faculty of Dentistry, Airlangga University, Surabaya, Indonesia
4 Study Program of Environmental Health, Polytechnic of Health, Surabaya, Indonesia
5 Faculty of Health, Muhammadiyah University, Gresik, Indonesia

Correspondence Address:
Sri Agus Sudjarwo
Department of Pharmacology, Faculty of Veterinary Medicine, Airlangga University, Surabaya
Indonesia
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/ijnpnd.ijnpnd_57_18

Rights and Permissions

Objective: Herbal nanoparticles have gained interest in nanomedicine, and development of new therapeutic with improved bioavailability, increased sensitivity and specificity, and reduced toxicity. The aim of this study was to evaluate the antimycobacterial activity of the Pinus merkusii extract nanoparticle in vitro. Materials and Methods: Ethanolic extract of P. merkusii was set by maceration method. Tripolyphosphate (TPP) was used to make P. merkusii nanoparticles by ionotropic gelation method. The size and morphology of the P. merkusii nanoparticle was analyzed using scanning electron microscope (SEM). The broth microdilution and micro diffusion methods were used to determine the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of P. merkusii nanoparticle on strain Mycobacterium tuberculosis H37Rv. Results: The SEM micrographs of the nanoparticle extract of P. merkusii showed that they were approximately uniform spheres with rough surface morphology and a solid dense cubical or rectangular structure. The size of P. merkusii nanoparticle ranged from10 to 800 nm; most were 500 nm. Using the broth microdilution and micro diffusion susceptibility method, P. merkusii nanoparticle was found to have the antimycobacterial effects with a MIC value of 1000 µg/ml and MBCs value of 2000 µg/ml for M. tuberculosis H37Rv. Conclusion: P. merkusii extract nanoparticle has the lead compounds that may be developed further into antimycobacterial drugs.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed824    
    Printed74    
    Emailed0    
    PDF Downloaded83    
    Comments [Add]    

Recommend this journal