Users Online: 460

Home Print this page Email this page Small font sizeDefault font sizeIncrease font size

Home | About us | Editorial board | Search | Ahead of print | Current issue | Archives | Submit article | Instructions | Subscribe | Contacts | Login 
     
ORIGINAL ARTICLE
Year : 2019  |  Volume : 9  |  Issue : 1  |  Page : 41-47

Phoenix dactylifera L. Fruits Date Fruit Ameliorate Oxidative Stress in 3-NP Intoxicated PC12 Cells


1 Department of Food Science and Human Nutrition, Sultan Qaboos University, Muscat; Ageing and Dementia Research Group, Sultan Qaboos University, Oman
2 Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Chidambaram, Tamil Nadu, India
3 Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, Karnataka, India

Correspondence Address:
Musthafa M Essa
Food Science and Nutrition Sultan Qaboos University
Oman
Saravana B Chidambaram
Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, Karnataka, 570015
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/ijnpnd.ijnpnd_51_18

Rights and Permissions

Introduction: Date palm fruits (DFs) are reported to possess antimutagenic, antiviral, antifungal, and anti-inflammatory properties. Effect of date fruits in the management of Huntington’s is yet to be studied. Methods: The protective effects of DF were measured in terms of superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities and reduced glutathione (rGSH), malondialdehyde (MDA) and nitrate/nitrite (NO2/NO3) content in cells. Cellular adenosine triphosphate (ATP) content was also measured. Cytotoxicity assay revealed that DF has the ability to protected cellular viability against 3-NP intoxication. Results: DFs increased the SOD and GPx activities and rGSH content. On the other hand, DF decreased MDA and NO2/NO3 levels in 3-NP intoxicated cells. Interestingly, DF increased ATP content in pheochromocytoma (PC) cells. Conclusion: DF has the ability to encounter 3-NP intoxication induced biochemical changes and improves cellular ATP contents, hence may be an interestingly candidate for further investigations.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed447    
    Printed43    
    Emailed0    
    PDF Downloaded35    
    Comments [Add]    

Recommend this journal