Users Online: 191

Home Print this page Email this page Small font sizeDefault font sizeIncrease font size

Home | About us | Editorial board | Search | Ahead of print | Current issue | Archives | Submit article | Instructions | Subscribe | Contacts | Login 
     
ORIGINAL ARTICLE
Year : 2018  |  Volume : 8  |  Issue : 3  |  Page : 92-100

Protective role of heartogen against myocardial infarction in rats


1 Department of Biotechnology, Jeppiaar Engineering College, Chennai, India
2 Department of Biochemistry, PRIST University, Thanjavur, India
3 Research and Development Centre, Bharathiar University, Coimbatore, Tamil Nadu, India
4 Muniyal Ayurveda Research Centre, Muniyal Institute of Ayurveda Medical Sciences, Manipal, India
5 Dr. Krshna Life Sciences Ltd., Manipal, India
6 Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysore, Karnataka, India

Correspondence Address:
Saravana Babu Chidambaram
Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysore, Karnataka
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/ijnpnd.ijnpnd_25_18

Rights and Permissions

Introduction: Heartogen [HTN], an Ayurvedic medicine is a combination of herbs and bhasmas used in cardiac ailments. Objectives: The present study is aimed at investigating the cardio-protective effects of HTN against isoproterenol [ISP] induced myocardial infarction in rats. Methods: Male rats were pre-treated with HTN [50 and 100mg/kg/day, p.o] or vehicle [0.3% CMC] for 21 days. ISP [120mg/kg, s.c; 2 doses at 24 h interval] was administered on days 19 and 21. On day 22, plasma and heart tissues were collected for biochemical, molecular and histopathological analyses. Results: Pretreatment with HTN significantly reduced plasma CK-MB and cardiac LPO while increased SOD, GSH and GPx levels when compared vehicle treated rats. HTN improved NaKATPase, CaATPase and MgATPase activities in the hearts of ISP intoxicated rats. HTN down-regulated p53, caspase-3 and Bax and up-regulate Bcl2 gene expression. HTN treated rats showed minimal degree of histoarchitectural changes in heart when compared to positive control. Conclusion: Hence, in this manuscript we propose that HTN has the ability to protect against myocardial infarction via anti-oxidant and anti-apoptotic mechanisms.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed343    
    Printed40    
    Emailed0    
    PDF Downloaded68    
    Comments [Add]    

Recommend this journal