Users Online: 263

Home Print this page Email this page Small font sizeDefault font sizeIncrease font size

Home | About us | Editorial board | Search | Ahead of print | Current issue | Archives | Submit article | Instructions | Subscribe | Contacts | Login 
     
ORIGINAL ARTICLE
Year : 2015  |  Volume : 5  |  Issue : 4  |  Page : 151-158

Ginger extract attenuates preliminary steps of streptozotocin-mediated oxidative stress in diabetic rats


Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman

Correspondence Address:
Nejib Guizani
Department of Food Science and Nutrition, Sultan Qaboos University, PO Box - 34, Al-Koud - 123, Muscat
Oman
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/2231-0738.167503

Rights and Permissions

Objective: Although the role of streptozotocin (STZ) in the pathogenesis of diabetes in rats has been well investigated, as evidenced by several citations, to our knowledge no study has been carried out yet to examine the preliminary steps of STZ-mediated oxidative stress in pancreatic rat tissues. This study aimed to evaluate the hypoglycemic and potential antioxidant properties of ginger extract (GE) in diabetic rats. Materials and Methods: Forty-eight male Sprague-Dawley rats weighting 250-300 g were allocated to groups as follows: Nondiabetic control group (n = 12) that received chow diet; nondiabetic control group that received chow diet plus oral feeding of GE (n = 12); diabetic group (n = 12) that received chow diet; and diabetic group (n = 12) that received chow diet plus oral feeding of GE. The drug STZ was used as a diabetogenic agent in a single intraperitoneal injection dose of 60 g/kg body weight, and the blood glucose level for each rat was measured twice a week. After 12 weeks, all animals were overnight fasted and sacrificed; serum was collected for biochemical measurements of glucose, insulin, and oxidative stress indices [advanced oxidation protein products (AOPP), protein carbonyls, and nitrates plus nitrites]. The pancreas tissues were dissected and homogenized for antioxidant measurements [glutathione (GSH) and total antioxidant capacity (TAC)]. Results: Diabetic rats treated with GE showed a significant protective effect against STZ-induced hyperglycemia and oxidative stress as compared with the control group. Conclusion: Our results suggested that GE possesses potential benefits in controlling type 2 diabetes mellitus (T2DM) and that it may also prevent pancreas damage.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1890    
    Printed49    
    Emailed0    
    PDF Downloaded101    
    Comments [Add]    
    Cited by others 2    

Recommend this journal